
SUPPLEMENTAL METHODS 
 
NIH EXAMINER Subtests 
 
Working Memory 
Dot Counting: In this verbal working memory task, examinees are shown an array of green 
circles, blue circles, and blue squares and are asked to count the number of blue circles. The 
examinees are shown 2-7 trials and asked to count the number of blue circles on each. After all 
displays are shown, the examinee recalls the number of blue circles in each of the displays, in 
the correct order. Partial credit is given based on the number of correctly recalled totals.  

 
Spatial N-Back: The NIH-EXAMINER N-back is a spatial version of the commonly used N-back 
working memory paradigm that requires flexible updating of information. Participants were 
shown a series of white squares in different positions on the screen. In the 1-back task, 
participants were asked to respond whenever the position of the square matched the position 
of the last square (1-back) that was presented. In the 2-back, participants responded if the 
square’s position matched the position of the square shown two squares previously. The 
primary outcome was a discriminability index (d-prime) incorporating hits and false positives.   

 
Cognitive Control: 
Flanker: A row of five arrows was presented, and the examinee was instructed to focus on the 
center arrow. The examinee was then asked to indicate whether the center arrow pointed 
toward the right or left. There were two conditions interspersed during the task: either the 
remaining arrow pointed in the direction congruent or incongruent with the center arrow. The 
latter requires cognitive control and response inhibition. The outcome was a single variable 
combining accuracy and reaction time [1].  

 
Dimensional Set-Shifting: This computerized set-shifting task was modeled after a previously 
published paradigm [2,3]. Examinees are asked to match a stimulus at the top of the screen with 
one of two stimuli in either corner at the bottom of the screen. The stimulus also indicates 
whether they are to match on color or shape. In task-homogenous block, examinees match 
either shape or color, whereas in the task-heterogeneous blocks, they must switch between 
matching shape and color. The outcome variable was again a composite of accuracy and 
reaction time [1]. 

 
Fluency:  
Phonemic Fluency: Examinees were asked to quickly names as many words as possible beginning 
with a specific letter of the alphabet over two 60-second trials. They were not allowed to name 
people, places, numbers, or grammatical variants of previous responses.  
 
Categorical Fluency:  Examinees were asked to quickly name as many items as they could that 
belonged to a given category over two 60-second trials.  
 
The outcomes for fluency were total correct words generated. 

 
Genetic Testing 
Samples were screened using targeted sequencing of a panel of genes previously implicated in 
neurodegenerative disorders. Exonic regions were captured using a custom designed library (SeqCap EZ 



Choice Library, NimbleGen) and sequenced on an Illumina HiSeq4000 at the UCLA Neuroscience 
Genomics Core (http://www.semel.ucla.edu/ungc). Sequence reads were mapped to the GRCh37/hg19 
reference genome, variants were joint-called with GATK [4], and annotated using ANNOVAR and the 
Ensembl Variant Effect Predictor tool [5,6]. The coding and exon-intron boundary regions of GRN and 
MAPT genes were screened for known (listed in the AD&FTD Mutation Database: 
http://www.molgen.ua.ac.be/ADMutations) or novel (likely) pathogenic variants (classified according to 
the American College of Medical Genetics and Genomics and the Association for Molecular Pathology 
guidelines) [7]. All pathogenic variants found were subsequently confirmed by Sanger sequencing. The 
presence of a pathological hexanucleotide repeat expansion in C9orf72 was detected using both 
fluorescent and repeat-primed PCR, as previously described [8]. 
 
 
Neuroimaging 
The current analysis used the T1 weighted images, which were acquired as Magnetization Prepared 
Rapid Gradient Echo (MP-RAGE) images using the following parameters: 240x256x256 matrix; about 170 
slices; voxel size = 1.05x1.05x1.25 mm3; flip angle, TE and TR varied by vendor. Image processing is 
described in detail in the supplemental methods. 
 

 
Image Processing 
Before any prepossessing of the images, all T1-weighted images were visually inspected for quality 
control. Images with excessive motion or image artifact were excluded. The sample with neuroimaging 
that passed quality control included 80 mutation carriers with 140 visits. T1-weighted images undergone 
bias field correction using N3 algorithm, the segmentation was performed using SPM12 (Wellcome Trust 
Center for Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm) unified segmentation [9]. A 
group template was generated from segmented gray and white matter tissues and cerebrospinal fluid 
by non-linear registration template generation using Large Deformation Diffeomorphic Metric Mapping 
(LDDMM) framework [10]. Subjects’ native space gray and white matter were normalized, modulated 
and smoothed in the group template. The applied smoothing used a Gaussian kernel with 10~mm full 
width half maximum. Every step of the transformation was carefully inspected from the native space to 
the group template. For statistical purposes, linear and non-linear transformations between the group 
template space and International Consortium of Brain Mapping (ICBM) [11] was applied. A standard 
parcellation atlas (Desikan et al., 2006) was transformed into ICBM space.  

 
Statistical analyses.  
 

Effect Sizes  
Effect sizes for each measure were evaluated by calculating sample sizes (per arm) required to 
detect 25% and 40% reductions in decline [12], using 10,000-fold bootstrapping as described in 
supplemental methods. Sample size estimates were calculated using annualized change scores 
and the standard deviation of this annualized change. Annualized change was defined as the 
difference in performance between participants’ first and second visit, divided by the time 
interval between these visits. We chose to use a two-time point calculation of change, rather 
than using parameters from the LME model, to remain consistent with standard clinical trial 
methodology. Each sample size estimate was obtained using the boot package from ‘R’, and 
95% confidence intervals were estimated using a 10,000-fold bootstrapping procedure. 



 
 Follow-up Analyses 
In follow up analyses, we assessed the associations between the NIH-EXAMINER Executive 
Composite score, FTLD-CDR-SB, and volume of the 4 lobar volumes (see supplemental methods 
for details). Following Neuhaus et al. [13,14], we decomposed the Executive Composite score 
into within-(time-varying) and between-subject (time-invariant) components to directly relate 
purely within-subject change in Executive Composite with changes in brain volume and FTLD-
CDR-SB and to avoid estimation bias resulting from incorrectly assuming common within- and 
between-subject effects. We first calculated a time-invariant mean score across visits for each 
person. We then subtracted each participant’s mean from his/her EXAMINER composite at each 
time point to estimate a mean-centered, within-person metric of change. Both were entered as 
predictors into LME models with FTLD-CDR-SB or neuroimaging ROIs as the outcomes. 
Covariates included gender, baseline age and education, as well as their interactions with time. 
Total intracranial volume and its interaction with time were entered in the models with 
neuroimaging outcomes. We also analyzed the association between the Executive Composite 
and lobar volumes in the non-carrier controls to further validate the association between this 
measure and neural tissue. 
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